ATLAS DU GISEMENT DE VENT SUR LES ÎLES LOYAUTES (NOUVELLE-CALEDONIE)

Avril 2012
Avertissement: Les informations contenues dans cette note sont à l’usage exclusif du client. Toute publication ou communication à des tiers doit faire l’objet d’un accord préalable de Meteodyn.

ATLAS DU GISEMENT DE VENT SUR LES ILES LOYAUTES (NOUVELLE-CALEDONIE)

Réf. : R12007_01

Destinataire : Georges KAKUE
Convention n°237/2011 du 16/11/11

Auteur : Stéphane SANQUER
Type de document : Rapport
59 pages

N° version Date Résumé de la modification Réalisé par Vérifié par Approuvé par

01 20/03/12 Création Stéphane SANQUER Jean-Claude Houbart Didier DELAUNAY
SOMMAIRE

1. INTRODUCTION .. 3
 1.1 Description de l’Atlas .. 3
 1.2 Méthodologie .. 4

2. LE VENT MESURÉ AUX STATIONS DE SURFACE – CHOIX DE L’ANNEE DE REFERENCE 5
 2.1 Sélection des stations .. 5
 2.2 Statistiques du vent mesuré et choix de l’année de référence .. 5
 2.3 Corrections des données aux stations météorologiques (effet de masque) 8

3. PRISE EN COMPTE DES EFFETS THERMIQUE DE MESO-ECHELLE ... 11
 3.1 Principes de la simulation de méso-échelle .. 11
 3.2 Résultats des simulations à méso-échelle ... 12
 3.3 Méthode de prise en compte des effets thermiques ... 16

4. PRISE EN COMPTE DES EFFETS DE TOPOGRAPHIE ET DE RUGOSITE DE TERRAIN :
 SIMULATIONS MICRO-ECHELLES ... 19
 4.1 Méthodologie ... 19
 4.1.1 Correction du vent aux stations de 10 m à 40 mètres au-dessus du sol 19
 4.1.2 Transformation du vent météo à 40 m en vent à 40 m sur l’ensemble de l’île 20
 4.2 Construction des modèles numériques de terrain et cartes de rugosité 21
 4.3 Exemples de résultats des simulations micro-échelles ... 23

5. CALCUL DE L’ATLAS ... 25
 5.1 Grandeurs caractéristiques du gisement éolien ... 25
 5.1.1 Calcul du vent instantané à 40 m sur l’ensemble des îles ... 25
 5.1.2 Paramètres de Weibull .. 26
 5.1.3 Intensité de turbulence .. 26
 5.1.4 Densité énergétique .. 27
5.1.5 Production annuelle .. 27
5.2 Cartographies ... 28
6. UTILISATION DE L’ATLAS .. 30
ANNEXE 1 : LE CODE DE CALCUL METEODYN WT 31
ANNEXE 2 : CARTOGRAPHIES D’ENSEMBLE 35
1. INTRODUCTION

1.1 Description de l'Atlas

L'atlas du gisement de vent des îles Loyautés de Nouvelle-Calédonie fournit, avec une résolution spatiale horizontale de 125 m, les caractéristiques du gisement éolien à une hauteur de 40 m données par :

- la vitesse moyenne annuelle du vent
- la densité énergétique moyenne
- les paramètres de forme et d'échelle de la distribution de Weibull de la vitesse du vent
- l'intensité de turbulence moyenne
- la production annuelle moyenne pour une éolienne type

Figure 1 : Iles Loyautés : Ouvéa, Lifou, Tiga et Maré
1.2 Méthodologie

La méthodologie repose sur un couplage entre un calcul à l'échelle locale, avec résolution des équations de la mécanique des fluides (méthode CFD), et une prise en compte des effets thermiques de méso-échelle intégrant elle-même des données d'analyse des écoulements atmosphériques à l'échelle des îles loyauté.

Pour déterminer l'effet de la topographie locale sur l'écoulement du vent, on utilise le code de calcul meteo\textit{dyn}WT (cf. Annexe 1), sur des domaines de 10 km de côté et avec une résolution de 125 m. Les effets thermiques sont appréhendés avec des simulations méso-échelle complétées par une analyse des données météorologiques des îles et de la grande terre.

Sur la Province des Îles Loyautés, on dispose de 3 stations pour lesquelles le vent moyen sur 10 minutes a été mesuré à 10 m de hauteur pendant cette période. La réalisation de la cartographie est basée sur l'interpolation horizontale et l'extrapolation verticale des mesures aux stations de base. L'extrapolation verticale (entre 10 m et 40 m) est réalisée à partir de la modélisation à l'échelle locale, alors que l'extrapolation horizontale (au niveau 40 m) est réalisée en prenant en compte à la fois la modélisation à l'échelle locale et la modélisation des effets de méso-échelle.

L’atlas éolien régional est donc réalisé suivant quatre étapes :

- **Étape 1** : Calcul des statistiques du vent local aux stations sélectionnées. Choix de l’année de référence et correction des effets de masque aux stations
- **Étape 2** : Calculs de méso-échelle sur la période de référence au pas de temps tri-horaire et estimation des effets thermiques sur les variations nocturnes et diurnes
- **Étape 3** : Calculs micro-échelle.
- **Étape 4** : Génération de la cartographie à partir des mesures aux stations.
2. LE VENT MESURE AUX STATIONS DE SURFACE – CHOIX DE L’ANNEE DE REFERENCE

2.1 Sélection des stations

La climatologie des îles Loyautés n’est accessible que par un nombre réduit de points de mesure (10 au total pour les 4 îles). Les 3 stations pour lesquelles nous disposons de mesure de vent sont décrites au tableau 1. Ce sont les stations de mesure sur les aérodromes des îles principales de l’archipel des îles Loyautés : Ouvéa, Lifou et Maré. Nous disposons au moins de 10 années de mesure en continu. La période de référence va de 2001 à 2010. Compte tenu du coût des données météo en série temporelle, nous choisissons une année de référence représentative de la séquence de 10 ans.

Les stations d’Ouloup et La Roche feront l’objet de correction de mesure compte tenu des effets de masque dus à la proximité des bâtiments au mat de mesure (voir paragraphe 2.3).

<table>
<thead>
<tr>
<th>indicatif</th>
<th>nom</th>
<th>Ile</th>
<th>latitude</th>
<th>longitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>98820001</td>
<td>OULOUP</td>
<td>Ouvéa</td>
<td>20°38'33.16"S</td>
<td>166°34'21.61"E</td>
</tr>
<tr>
<td>98814001</td>
<td>OUANAHAM</td>
<td>Lifou</td>
<td>20°46'38.26"S</td>
<td>167°14'25.17"E</td>
</tr>
<tr>
<td>98815001</td>
<td>LA ROCHE</td>
<td>Maré</td>
<td>21°28'55.61"S</td>
<td>168°2'11.64"E</td>
</tr>
</tbody>
</table>

Tableau 1 : Stations pour lesquelles on dispose de 10 années de mesures de vent à 10 m de hauteur (2001-2010)

2.2 Statistiques du vent mesuré et choix de l’année de référence

Les vitesses moyennes annuelles pour les 10 années 2001 à 2010 sont données pour les stations d’Ouvéa, Lifou et Mare respectivement sur les figures 2, 3 et 4.
Figure 2 : Vitesse moyenne annuelle à la station Météo France d’Ouloup (Ouvéa) (moyenne 10 ans : 4.7 m/s)

Figure 3 : Vitesse moyenne annuelle à la station Météo France d’Ouanaham (Lifou) (moyenne 10 ans : 3.8 m/s)
Figure 4 : Vitesse moyenne annuelle à la station Météo France de La Roche (Maré) (moyenne 10 ans : 3.3 m/s)

<table>
<thead>
<tr>
<th>Station</th>
<th>Moyenne 2001-2010</th>
<th>Moyenne 2004</th>
<th>Moyenne 2001</th>
<th>Moyenne 2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>OULOUP (Ouvéa)</td>
<td>4.7</td>
<td>4.8</td>
<td>4.1</td>
<td>5.0</td>
</tr>
<tr>
<td>OUANAHAM (Lifou)</td>
<td>3.8</td>
<td>3.8</td>
<td>3.2</td>
<td>4.2</td>
</tr>
<tr>
<td>LA ROCHE (Maré)</td>
<td>3.4</td>
<td>3.5</td>
<td>3.0</td>
<td>3.6</td>
</tr>
</tbody>
</table>

Tableau 2 : Stations pour lesquelles on dispose de 10 années de mesures de vent à 10 m de hauteur (2001-2010)
Figure 5 : Vitesse moyenne mensuelle à la station Météo France d’Ouanaham (Lifou) pour la séquence 2001-2010 et les années 2004 et 2005

2.3 Corrections des données aux stations météorologiques (effet de masque)

Les mesures de vent sont menées au moyen d’un mat de 10 mètres pour la station de Lifou. En revanche, pour les aérodromes d’Ouvéa et de Maré, le mat de mesure est positionné sur la tour de contrôle (Figure 6). Une interaction aérodynamique est alors envisageable avec la tour et avec les bâtiments de l’aérogare.
Il convient d’évaluer un coefficient correctif en fonction des directions de vent pour les stations d’Ouvéa et de Maré.

Une étude aérodynamique est menée au moyen de l’outil UrbaWind qui permet d’évaluer les champs aérodynamiques en milieu urbain. Un exemple de simulation numérique est donné sur la figure 7 pour la direction de vent dominante correspondant aux alizés.

Les polaires du coefficient correctif (Figure 8) permettent de corriger les vitesses de vent à chaque instant de l’année de référence pour les stations d’Ouvéa et de Maré. Aucune correction n’est faite aux données de Lifou.
Figure 7 : Vecteur vitesse moyenne dans un plan horizontal à la hauteur de l’anémomètre pour la station d’Ouloup (direction du vent 100°)

Figure 8 : Polaires de coefficients correctifs pour les stations d’Ouvéa et de Lifou
3. PRISE EN COMPTE DES EFFETS THERMIQUE DE MESO-ECHELLE

3.1 Principes de la simulation de méso-échelle

Ces calculs ont été réalisés par la société MeteoGroup avec les spécifications suivantes :

- Période de simulation : année 2004
- Pas de temps 3 heures
- Domaine de calcul : rectangulaire comprenant l’ensemble des îles
- Résolution de la grille de calcul : 1 km
- Paramètres extraits : vitesse et direction moyenne du vent sur 10 minutes à 100 m de hauteur et gradient de température moyenne entre 0 et 200 m.

Le modèle utilisé est le code de calcul WRF (Weather Research and Forecasting), développé en grande partie par le NCAR (National Center for Atmospheric Research). WRF est un modèle communautaire très largement utilisé. De nombreux organismes de recherches et opérationnels contribuent aux développements du code (e.g. NCEP, NOAA, AFWA, ...).

Pour cette étude, nous utilisons les données d’analyse NCEP-FNL qui sont disponibles globalement à une résolution d’environ 80 km depuis Juillet 1999. Nous utiliserons ces données pour forcer une première grille WRF à 27 km de résolution. A cette résolution, nous obtiendrons une bonne idée de la structure de la méso-échelle de la région sans toutefois prendre en compte toute la complexité topographique. Nous mettons en place une méthode de raffinement de maillage (nesting) dans le but d’obtenir une simulation à 1 km englobant la totalité des 3 îles. La configuration sera donc constituée de 4 niveaux de zoom, un premier à 27 km, un second à 9 km, un troisième à 3 km et le dernier à 1 km (cf. Figure 9). Avec ce type de stratégie, les grilles à 1 km seront forcées aux bords par des données représentatives de l’activité grande échelle de la région d’intérêt.
Au final, l’ensemble des résultats obtenus est réparti sur un maillage uniforme de toute la région des Îles Loyautés représentant 677 points de calculs avec une résolution horizontale de 1 km (Figure 10). La grille de calcul couvre 247 km de longitude et 187 km de latitude.

3.2 Résultats des simulations à méso-échelle

Les simulations à méso-échelle donnent les vitesses toutes les 3 heures sur une grille de points de 1 km x 1 km situés à 100 mètres au-dessus du sol. Les moyennes annuelles de l’année de référence sont données sur la figure 11.
Les vitesses horaires moyennes nocturnes (5 heures) et diurnes (14 heures) sont représentées sur les figures 12 et 13 qui montrent les amplitudes de vitesse de vent associées aux effets thermiques : stabilité et effet de brise.
Figure 13 : Vitesse moyenne du vent à 14 heures à 100 mètres au-dessus du sol (modélisation méso-échelle).

L’amplitude de vitesse Diurne/Nocturne est représentée sur la figure 14 pour l’ensemble de la cartographique des îles et pour les stations météorologiques sur la figure 16 après correction des effets micro-échelles (transfert des données de 100 mètres à 10 mètres). Une comparaison est également faite avec les données issues des mesures de sol de Météo France.

Figure 14 : Amplitude de vitesse Diurne-Nocturne à 100 mètres au-dessus du sol (modélisation méso-échelle).
La figure 15 représente la différence entre la vitesse moyenne en début d’après midi et la vitesse moyenne annuelle pour tous les points de la grille. C’est un traceur de l’effet de brise.

Figure 15 : Différence de vitesse diurne-vent moyen à 100 mètres au-dessus du sol (modélisation méso-échelle).

Figure 16 : Évolution horaire de la vitesse moyenne à 10 mètres au-dessus du sol (modélisation méso-échelle transposée à 10 mètres au-dessus du sol).
Commentaires :

L’amplitude de vitesse Diurne/Nocturne est plus importante sur les îles massive (Lifou, Maré) que sur les îles de petites dimensions (Ouvéa, Tiga) où l’amplitude est négligeable.

Les simulations méso-échelle montrent bien la différence de comportement des îles Lifou et Maré qui voient des réductions de vitesse pendant la nuit en dehors de la côte Est alors que les îles d’Ouvéa et de Tiga ne sont pas sujettes à ce type d’évolution. Ceci est typiquement la signature d’effet de stabilité. Les îles massives se refroidissent à la tombée du jour. La couche limite atmosphérique devient stable et la diffusion turbulente se réduit. Ainsi, les basses couches atmosphériques deviennent stables et la vitesse de vent diminue près du sol.

La simulation méso-échelle sous-estime les effets de brise qui sont de l’ordre de 0.5 m/s pour les îles massives. La simulation montre bien l’absence d’effet de brise sur les petites îles.

L’amplitude de vitesse des simulations méso-échelle est sous-estimée comparée aux mesures des stations météo. Elle est de 1 m/s pour les simulations alors que l’amplitude aux stations peut atteindre 3 m/s pour les stations de Lifou et de Maré.

Le modèle de simulation méso-échelle mis en œuvre pour cette étude a des difficultés à reproduire les effets de stabilité et des effets de brise pour les îles de ce type. Il convient de mettre en œuvre une méthode complémentaire des corrections des effets thermiques.

3.3 Méthode de prise en compte des effets thermiques

Afin de bien identifier la part de l’amplitude Diurne/Nocturne associée :

- aux effets de stabilité : réduction de vitesse dans les zones se refroidissant
- aux effets de brise de mer : vent de la mer vers la terre qui est plus chaude que la mer
- aux effets de brise de terre : vent de la terre vers la mer qui est plus froide que la mer

Les données de mesure des îles Loyautés ont été complétées avec des données de deux autres stations météorologiques positionnées en bordure de mer : Touho sur la côte Est et Belep sur une île de petite dimension analogue à Ouvéa.
Nous constatons que les évolutions horaires des stations de Belep et de Touho sont similaires à celle d’Ouvéa. Les amplitudes y sont faibles, de l’ordre de 1 m/s (Figure 17).

Les effets de stabilité à Touho sont très faibles car la station est sur la côte. L’amplitude jour-nuit est associée aux effets de brise dus au réchauffement de la Grande Terre. Ouvéa et Belep sont vraiment équivalentes avec des légers effets de stabilité combinés à de légers effets de brise.

La méthode de correction consiste :

- à discerner aux stations météo en fonction des heures de la journée la part de l’amplitude Diurne-Nocturne associée à la stabilité (de 17 heures à 7 heures) et la part de l’amplitude Diurne-Nocturne associée aux effets de brise (de 7 heures à 17 heures)

- à transposer les corrections aux points de la grille de résultats en fonction de leur distance à la côte. Les effets de stabilité sont négligeables dans une bande de 500 m de la côte des vents dominants et maximaux au-delà d’un km. En journée, les vitesses de brise de mer sont maximales sur les côtes et nulles au milieu de l’île (zone de divergence). Compte tenu de la position de la côte, les brises se combinent aux alizés : elles s’ajoutent à l’Est et s’opposent à l’Ouest.

Une manière de faire la séparation de l’amplitude diurne est d’exprimer l’évolution temporelle

Figure 17 : Evolution horaire de la vitesse moyenne à 10 mètres au-dessus du sol pour les 3 stations de la Province des Îles et deux autres stations (Touho, Belep).
des vitesses moyennes horaires en corrigeant des effets topographiques et des effets de rugosité (Figure 18). Le choix d’une vitesse synoptique moyenne permet d’extraire les vitesses de brise et du déficit de vitesse associé à la stabilité à 10 mètres au-dessus du sol pour les 3 stations de la Province des Îles.

Figure 18 : Evolution horaire de la vitesse moyenne à 10 mètres au-dessus du sol pour les 3 stations de la Province des Îles corrigées des effets de topographie et de rugosité.

Figure 19 : Evolution horaire des vitesses de brise et du déficit de vitesse associé à la stabilité à 10 mètres au-dessus du sol pour les 3 stations de la Province des Îles.
4. PRISE EN COMPTE DES EFFETS DE TOPOGRAPHIE ET DE RUGOSITE DE TERRAIN : SIMULATIONS MICRO-ECHELLES

4.1 Méthodologie

La méthodologie de calcul du vent aux stations de mesures, et également en chaque point de la cartographie, est développée suivant deux étapes :

- Correction du vent mesuré aux stations de référence : transfert des données de 10 mètres à 40 mètres de hauteur
- Correction du vent à 40 mètres d’altitude de la station de référence aux points de la grille de résultat

4.1.1 Correction du vent aux stations de 10 m à 40 mètres au-dessus du sol

Le vent aux stations de base est extrapolé à 40 m de hauteur en prenant en compte les effets de rugosité et topographie locales. On considère 18 classes de direction de vent synoptique (secteurs de 20 degrés) et les 3 classes de stabilité thermique (neutre, légèrement stable, moyennement stable).

On en déduit ainsi, à partir des données de vent mesurées, les statistiques des vitesses de vent à 40 m au-dessus du point de mesure.

En chacune de ces stations, on effectue un calcul de résolution fine (50 m à proximité de la station), prenant en compte l’ensemble des effets topographiques locaux afin de déterminer les coefficients de correction locale aux stations. On calcule donc les coefficients suivants :

\[
C_{\text{station}}^{10}(D_{\text{syn}}, S) = \frac{V_{\text{station}}^{10}}{V_{\text{syn}}} \quad \text{et} \quad C_{\text{station}}^{40}(D_{\text{syn}}, S) = \frac{V_{\text{station}}^{40}}{V_{\text{syn}}}
\]

\[
R_{\text{station}} = C_{\text{station}}^{40}(D_{\text{syn}}, S) / C_{\text{station}}^{10}(D_{\text{syn}}, S) = \frac{V_{\text{station}}^{40}}{V_{\text{station}}^{10}}
\]

De même, on calcule les déviations locales de direction \(\Delta_{\text{station}}^{40} \) telle que :

\[
\Delta_{\text{station}}^{10}(D_{\text{syn}}, S) = D_{\text{station}}^{10} - D_{\text{syn}} \quad \text{et} \quad \Delta_{\text{station}}^{40}(D_{\text{syn}}, S) = D_{\text{station}}^{40} - D_{\text{syn}}
\]
En général, compte tenu de la topographie des îles Loyautés, la variation de déviation en angle du vent est négligeable entre 10 mètres et 40 mètres. Les calculs d'échelle locale sont réalisés avec le logiciel me teodynWT, qui résout les équations complètes de la Mécanique des Fluides, par une méthode de volumes finis. Cette méthode assure une bonne fiabilité de l’estimation, même pour des terrains très complexes présentant de fortes pentes ou de fortes rugosités (cf. Annexe 1). Les données de topologie et de rugosité ont été fournies par la DIMENC et sont issues de la base de données GEOPREP.

4.1.2 Transformation du vent météo à 40 m en vent à 40 m sur l’ensemble de l’île

Les calculs d’effets locaux, sont réalisés sur l’ensemble de la région avec un pas de 125 m avec le même outil.

\[C_{\text{station}}^{40}(D_{\text{syn}}, S) = \frac{V_{\text{station}}^{40}}{V_{\text{syn}}^{40}} \quad \text{et} \quad C_{\text{grille}}^{40}(D_{\text{syn}}, S) = \frac{V_{\text{grille}}^{40}}{V_{\text{syn}}^{40}} \]

\[R_{\text{meso}} = \frac{C_{\text{grille}}^{40}(D_{\text{syn}}, S)}{C_{\text{station}}^{40}(D_{\text{syn}}, S)} = \frac{V_{\text{grille}}^{40}}{V_{\text{40}}^{40}} \]

De même, on calcule les déviations locales de direction \(\Delta_{\text{station}}^{40} \) telle que :

\[\Delta_{\text{station}}^{40}(D_{\text{syn}}, S) = D_{\text{station}}^{40} - D_{\text{syn}} \quad \text{et} \quad \Delta_{\text{station}}^{40}(D_{\text{syn}}, S) = D_{\text{station}}^{40} - D_{\text{syn}} \]
4.2 Construction des modèles numériques de terrain et cartes de rugosité

L’occupation du sol est donnée par les images satellite ATLAS qui permet via des codes de couleurs (Figure 21) de connaître l’occupation du sol. La rugosité du sol au sens du vent sur les îles Loyautés (Figure 22) est alors déduite en associant les rugosités usuelles aux types de sol et de végétation les plus courants via la base européenne de Corine Land Cover (Tableau 3).
Rugosité du sol

Figure 22 : Rugosité du sol

<table>
<thead>
<tr>
<th>Type de sol</th>
<th>Code Land Cover 00</th>
<th>Rugosité (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - Territoires artificialisés</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tissu urbain</td>
<td>111-112</td>
<td>0.70</td>
</tr>
<tr>
<td>Zones industrielles ou commerciales</td>
<td>121</td>
<td>0.40</td>
</tr>
<tr>
<td>Réseaux routier et ferroviaire et espaces associés</td>
<td>122</td>
<td>0.40</td>
</tr>
<tr>
<td>Zones portuaires</td>
<td>123</td>
<td>0.40</td>
</tr>
<tr>
<td>Aéroports</td>
<td>124</td>
<td>0.05</td>
</tr>
<tr>
<td>Extraction de matériaux – Décharges - Chantiers</td>
<td>131-133</td>
<td>0.10</td>
</tr>
<tr>
<td>Equipements sportifs et de loisirs</td>
<td>142</td>
<td>0.10</td>
</tr>
<tr>
<td>2 - Territoires agricoles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terres arables hors périmètres d’irrigation</td>
<td>211</td>
<td>0.10</td>
</tr>
<tr>
<td>Périmètres irrigués en permanence</td>
<td>212</td>
<td>0.01</td>
</tr>
<tr>
<td>Rizières, marais</td>
<td>213</td>
<td>0.01</td>
</tr>
<tr>
<td>Vignobles, vergers</td>
<td>221-223</td>
<td>0.05</td>
</tr>
<tr>
<td>Prairies</td>
<td>231</td>
<td>0.05</td>
</tr>
<tr>
<td>Cultures annuelles associées aux cultures permanentes</td>
<td>241</td>
<td>0.03</td>
</tr>
<tr>
<td>Systèmes culturaux et parcellaires complexes</td>
<td>242</td>
<td>0.03</td>
</tr>
<tr>
<td>Surfaces essentiellement agricoles, interrompues par des espaces naturels importants</td>
<td>243</td>
<td>0.05</td>
</tr>
<tr>
<td>Territoires agro forestiers</td>
<td>244</td>
<td>0.10</td>
</tr>
<tr>
<td>3 - Forêts et milieux semi-naturels</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>Forêts de feuillus</td>
<td>311-313</td>
<td>0.70</td>
</tr>
<tr>
<td>Pelouses et pâturages naturels</td>
<td>321</td>
<td>0.03</td>
</tr>
<tr>
<td>Landes et bruyerailles</td>
<td>322</td>
<td>0.10</td>
</tr>
<tr>
<td>Végétation sclérophyll</td>
<td>323</td>
<td>0.40</td>
</tr>
<tr>
<td>Forêts et végétation arbustive en mutation</td>
<td>324</td>
<td>0.40</td>
</tr>
<tr>
<td>Plages, dunes et sables</td>
<td>331</td>
<td>0.01</td>
</tr>
<tr>
<td>Roches nues</td>
<td>332</td>
<td>0.03</td>
</tr>
<tr>
<td>Végétation clairsemée</td>
<td>333</td>
<td>0.05</td>
</tr>
<tr>
<td>Glaciers et neiges éternelles</td>
<td>335</td>
<td>0.001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4 - Zones humides</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Marais, tourbières</td>
<td>411-412</td>
<td>0.01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5 - Surfaces en eau</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>511-523</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Tableau 3 : Classes de rugosité CORINE LAND COVER

4.3 Exemples de résultats des simulations micro-échelles

Figure 23 : Rapport de la vitesse à 40 mètres au-dessus du sol et de la vitesse à la station météo pour la direction synoptique de 110° - Ile de Lifou
Figure 24 : Intensité de turbulence à 40 mètres au-dessus du sol pour la direction synoptique de 110° - Ile de Lifou
5. CALCUL DE L'ATLAS

5.1 Grandeurs caractéristiques du gisement éolien

5.1.1 Calcul du vent instantané à 40 m sur l’ensemble des îles

La méthodologie pour calculer les caractéristiques du vent en chaque point à partir des statistiques de vent aux stations de base est celle présentée aux chapitres 3 et 4.

Calcul du vent

Nous pouvons déduire le vent à 40 m pour chacun des points de la grille de calcul à partir de la vitesse du vent mesurée aux stations météo à 10 mètres du sol (Voir Chapitre 4).

Une correction supplémentaire est nécessaire pour prendre en compte des effets thermiques de méso-échelle pour chaque instant de la journée (Voir Chapitre 3).

Ainsi la méthode de calcul de la vitesse sur la grille de l’atlas pour chaque pas de temps de la séquence de référence est la suivante :

\[
V_{grille}^{40}(x, y, t) = R_{meso} (D, S) R_{meteo} (D, S) V_{meteo}^{corrigé} (t) = R_{meso} (D, S) R_{meteo} (D, S) (V_{meteo}^{10}(t) + \Delta V_{meso}(x, y, t))
\]

Où \(\Delta V_{meso}(x, y, h)\) est la correction de vitesse dépendant de la position du point de la grille et de l’heure de la journée.

Les coefficients \(R_{meso}\) et \(R_{meteo}\) dépendent des directions de vent à la station D et de la classe de stabilité S. Les classes de stabilité sont reliées au niveau de vitesse moyenne du vent. Nous avons :

- Pour une vitesse moyenne du vent inférieure à 2.5 m/s : situation moyennement stable
- Pour une vitesse moyenne du vent comprise entre 2.5 m/s et 6.5 m/s : situation légèrement stable
- Pour une vitesse moyenne du vent supérieure à 6.5 m/s : situation neutre

La nuit, la situation est moyennement stable.

Nous en déduisons les vitesses moyennes en chaque point de la grille.
Cas particulier de Tiga :

5.1.2 Paramètres de Weibull

En chacun des points de maillage, et à chaque hauteur, on détermine à partir des fréquences de vitesses du vent moyen sur 10 minutes, les paramètres de formes et d’échelles d’une loi de distribution de Weibull, dont la fonction de répartition s’écrit :

\[
F(V) = 1 - \exp \left(- \frac{V}{A} \right)^k
\]

Les paramètres d’échelle \(A\), et de forme \(k\) sont calculés par la méthode des moments en considérant les moments d’ordre 1 et 3. Ainsi, la distribution ajustée satisfait exactement à la fois à la condition de moyenne, de la vitesse et de la moyenne du cube de la vitesse, donc aux effets de turbulence près, à la densité énergétique moyenne.

Les lois qui permettent d’obtenir \(A\) et \(k\) s’écrivent :

\[
\overline{V} = A \Gamma(1 + 1/k) \quad \text{et} \quad \overline{V}^3 = A^3 \Gamma(1 + 3/k)
\]

5.1.3 Intensité de turbulence

\(I\) est l’intensité de turbulence définie par \(I = \sigma_u/V\), où \(\sigma_u\) représente l’écart-type des fluctuations de la composante longitudinale du vent. En chaque point, et pour chaque classe de direction et de stabilité, la modélisation d’échelle locale a permis de calculer l’énergie cinétique turbulente \(k = \left[\sigma_u^2 + \sigma_v^2 + \sigma_w^2 \right]/2\), où \(\sigma_v\) et \(\sigma_w\) représentent respectivement les écarts-types des fluctuations des composantes transversale et verticale du vent.

Sur terrain plat homogène, les relations de Counihan nous donnent \(\sigma_v = 0.75\sigma_u\) et \(\sigma_w = 0.5\sigma_u\), soit \(I = 1.05\sqrt{k}\), alors qu’en terrain complexe, on a plutôt \(\sigma_v = 0.85\sigma_u\) et \(\sigma_w = 0.65\sigma_u\), d’où...
\[I = 0.97 \sqrt{k} \]. On utilise donc un paramètre \(a \) tel que \(I = a \sqrt{k} \), variant entre 1,05 pour une turbulence de type terrain homogène à 0.97 pour les niveaux de turbulence plus élevés.

5.1.4 Densité énergétique

Pour une vitesse de vent (moyenné sur 10 minutes) \(V \) donnée, la densité énergétique en chaque point est calculée à partir de la relation :

\[
E = \frac{1}{2} \rho V^2 \left(1 + 3I^2 \right)
\]

\(\rho \) est la densité de l'air moyennée sur l'année au point considéré, en prenant en compte l'altitude du lieu ainsi que la température moyenne de l'air.

Pour chaque classe de vitesse de vent et de direction, on calcule ainsi la densité énergétique associée. La densité énergétique en moyenne annuelle est obtenue par pondération des fréquences calculées de chaque couple (Vitesse, Direction).

5.1.5 Production annuelle

Pour une vitesse de vent (moyenné sur 10 minutes) \(V \) donnée, la puissance d'une éolienne est calculée à partir de la courbe de puissance. Celle-ci est donnée par le constructeur. De manière illustrative et ne présageant en rien le choix d'éoliennes pour des futurs parcs, nous avons choisi une éolienne de 100 kW avec une courbe de puissance comme présentée sur la figure 25.

La production est calculée à partir de la puissance moyenne sur l’année et est exprimée en MWh.

\[
P(M\text{Wh}) = \langle \text{Puissance} \rangle_{\text{année}} \times \frac{365}{1000}
\]
5.2 Cartographies

Nous représentons ci-après, à titre d'exemple, la vitesse moyenne, la densité énergétique moyenne et la production annuelle moyenne pour les 4 îles Loyautés. L’ensemble des cartes est produit en incluant les détails SIG fournis par la Province des Îles et livré en format image.
Figure 27 : Densité énergétique moyenne à 40 mètres au-dessus du sol

Figure 28 : Production moyenne à 40 mètres au-dessus du sol
6. UTILISATION DE L'ATLAS

Pour chacun des 6 paramètres (vitesse moyenne du vent, densité énergétique, intensité de turbulence, paramètre d’échelle et paramètre de forme de la distribution de Weibull, production moyenne) et pour la hauteur de l’étude (40 mètres), une carte par île est éditée. Cela représente donc un ensemble de 24 cartes constituant l’Atlas cartographique du gisement éolien sur la Province des Îles Loyautés.

Elles sont constituées des éléments suivants :

- un titre indiquant le nom de la zone administrative représentée, le paramètre et la hauteur;
- une légende explicative des éléments d’infrastructure (routes) et des éléments administratifs (villes principales);
- une légende des couleurs utilisées pour représenter la caractéristique du gisement étudiée;
- une échelle graphique des distances;
- une rose des directions géographiques;
- des logos (Province des Îles Loyautés DIMENC, ADEME et Meteodyn).

Les cartes ont été réalisées sous un format BMP.

Le système géodésique de projection retenu est le Lambert RGNC91-93, système utilisé en Nouvelle-Calédonie.

Les cartes sont représentées en Annexe 2. Les cartes ont également été livrées sous forme numérique.
ANNEXE 1 : LE CODE DE CALCUL METEODYN WT

Le système d’équations et sa résolution

meteodynWT résout les équations de Navier-Stokes tri-dimensionnelles, c'est-à-dire les équations générales de la mécanique des fluides (conservation de la masse et transport de la quantité de mouvement). Contrairement aux modèles linéarisés, tels que WAsP, le modèle ne fait pas l’hypothèse de petites perturbations. Ainsi, il ne présente pas de limitations relatives au type de topographie à traiter et permet d’étudier les reliefs complexes.

Les équations résolues sont les suivantes :

Conservation de la masse :

\[
\frac{\partial U}{\partial x} + \frac{\partial V}{\partial y} + \frac{\partial W}{\partial z} = 0
\]

Conservation de la quantité de mouvement :

\[
\begin{align*}
 U \frac{\partial U}{\partial x} + V \frac{\partial U}{\partial y} + W \frac{\partial U}{\partial z} &= -\frac{1}{\rho} \frac{\partial P}{\partial x} + \frac{\partial \bar{u}^2}{\partial x} + \frac{\partial \bar{u} v}{\partial y} + \frac{\partial \bar{u} w}{\partial z} \\
 U \frac{\partial V}{\partial x} + V \frac{\partial V}{\partial y} + W \frac{\partial V}{\partial z} &= -\frac{1}{\rho} \frac{\partial P}{\partial y} + \frac{\partial \bar{v} u}{\partial x} + \frac{\partial \bar{v}^2}{\partial y} + \frac{\partial \bar{v} w}{\partial z} \\
 U \frac{\partial W}{\partial x} + V \frac{\partial W}{\partial y} + W \frac{\partial W}{\partial z} &= -\frac{1}{\rho} \frac{\partial P}{\partial z} + \frac{\partial \bar{w} u}{\partial x} + \frac{\partial \bar{w} v}{\partial y} + \frac{\partial \bar{w}^2}{\partial z}
\end{align*}
\]

Où :

\(U, V, W \) : Composantes moyennes du vecteur vent.

\(P \) : Pression atmosphérique

\(u, v, w \) : Fluctuations des composantes du vent

Les équations sont résolues à partir d’une discrétisation de type volume fini et du solveur MIGAL de MFRDC.
Modèle de turbulence

Les flux turbulents, $\bar{u}v$, $\bar{u}w$, $\bar{v}w$, \bar{u}^2, \bar{v}^2, \bar{w}^2 sont paramétrés par le principe de viscosité turbulente ("Eddy Viscosity Modelling") qui suppose une proportionnalité entre les flux turbulents et les gradients des variables moyennes.

Ainsi, dans le référentiel du vent :

$$-\bar{u}v = -\nu_{T} \frac{\partial U}{\partial y} \quad -\bar{u}w = -\nu_{T} \frac{\partial U}{\partial z} \quad -\bar{v}w = 0$$

Le modèle utilise pour l’évaluation de la viscosité turbulente ν_{T} est un modèle dit « à une équation » qui implique qu’une nouvelle équation de transport est résolue. Ainsi, l’équation de transport de l’énergie cinétique turbulente présentée ci-dessous est résolue :

$$U_j \frac{\partial k}{\partial x_j} = P_k - \varepsilon + \frac{\partial}{\partial x_j} \left(\frac{\nu_{T}}{\sigma_k} \frac{\partial k}{\partial x_j} \right), \text{ with } \begin{cases} P_k = \nu_{T} \left(\frac{\partial U_i}{\partial x_j} + \frac{\partial U_j}{\partial x_i} \right) \frac{\partial U_i}{\partial x_j} \\ \nu_{T} = k^{1/2} L_{T} \end{cases}$$

L’échelle de longueur turbulente est calculée selon un modèle basé sur le travail de Yamada et Aritt.
Où z est la hauteur et R_d dépend de la stratification thermique considérée.

Cette méthodologie permet de prendre en compte le sillage généré par les obstacles (reliefs, forêts et villes), la production turbulente étant transportée dans le domaine.

Modèle de frottement au sol

Le frottement du flux d’air sur le sol est modélisé par des termes puits surfaciques dans les équations de la quantité de mouvement au niveau des mailles en contact avec le sol. Ces termes sont calculés en prenant en compte la rugosité locale et son impact sur le profil vertical.

Cette méthodologie a été validée à partir de formules empiriques traditionnelles dans les cas de rugosité homogène et inhomogène ; elle permet de modéliser la résistance aérodynamique du sol selon son type de couverture. Contrairement aux modèles classiques, ceci permet de modéliser les effets de la rugosité non seulement de forme directionnelle mais également de forme tridimensionnelle.

Dans le cas d’une forte rugosité (ville, forêt,..), des termes puits volumiques sont introduits dans les équations de la quantité de mouvement au niveau des mailles se situant dans le volume correspondant à la forêt ou à la ville. Ces termes agissent comme une force de trainée qui permet au modèle de prendre en compte le sillage en aval des zones de forte rugosité :

$$\rho \frac{DU}{Dt} = -\nabla p + \nabla \tau - \rho \cdot C_d \cdot U |U|$$

où C_d est un coefficient de trainée.

De plus, l’expression utilisée pour le calcul de l’échelle de longueur turbulente est modifiée au niveau de ces zones de forte rugosité. Ainsi :
\[\frac{1}{l} = \begin{cases} \frac{1}{l_o} + \frac{1}{\kappa d}, & \text{si } z > d \\ \frac{1}{l_o} + \frac{1}{\kappa z}, & \text{si } z < d \end{cases} \]

où d correspond à 30 fois la longueur de rugosité exprimée en mètres.

Enfin, le terme de dissipation dans l’équation de transport de l’énergie cinétique est modifié :

\[\varepsilon = \max(\varepsilon_{cc}, \varepsilon_{nl}), \text{ où} \begin{cases} \varepsilon_{cc} = C_{\mu} \frac{V_T}{L_T} k \\ \varepsilon_{nl} = C_{\mu} |U| k \end{cases} \]

Cette méthodologie permet d’améliorer la modélisation des profils verticaux du vent dans et sous le vent des zones de forte rugosité.
ANNEXE 2 : CARTOGRAPHIES D’ENSEMBLE
Vitesse moyenne à 40 m de hauteur
OUVEA

ATLAS EOLIEN
des îles Loyautés
(un point de calcul tous les 125 mètres)

ATLAS EOLIEN — carte générée le 32 mai 2002 à partir des données de vent du 01/01/2004 au 31/12/2004
Densité énergétique à 40 m de hauteur
OUVEA

ATLAS EOLIEN
des îles Loyautés
(un point de calcul tous les 125 mètres)
Intensité de turbulence à 40 m de hauteur
OUVEA

ATLAS EOLIEN
des îles Loyautés
(un point de calcul tous les 125 mètres)

ATLAS EOLIEN — carte générée le 32 mai 2002 à partir des données de vent du 01/01/2004 au 31/12/2004
Coefficient de Weibull A à 40 m de hauteur

OUVEA

ATLAS EOLIEN
des îles Loyautés
(un point de calcul tous les 125 mètres)
Coefficient de Weibull k à 40 m de hauteur
OUVEA

ATLAS EOLIEN des îles Loyautés
(un point de calcul tous les 125 mètres)
Production annuelle moyenne à 40 m de hauteur
OUVEA

ATLAS EOLIEN
des îles Loyautés
(un point de calcul tous les 125 mètres)

ATLAS EOLIEN — carte générée le 31 mai 2002 à partir des données de vent du 01/01/2004 au 31/12/2004
Vitesse moyenne à 40 m de hauteur
LIFOU

ATLAS EOLIEN
des îles Loyautés
(un point de calcul tous les 125 mètres)
Densité énergétique à 40 m de hauteur
LIFOU

ATLAS EOLIEN des îles Loyautés
(un point de calcul tous les 125 mètres)
Intensité de turbulence à 40 m de hauteur
LIFOU

ATLAS EOLIEN
des îles Loyautés
(un point de calcul tous les 125 mètres)
Coefficient de Weibull A à 40 m de hauteur
LIFOU

ATLAS EOLIEN
des îles Loyautés
(un point de calcul tous les 125 mètres)

Coefficient de Weibull \(k \) à 40 m de hauteur

LIFOU

ATLAS EOLIEN

des îles Loyautés

(un point de calcul tous les 125 mètres)
Densité énergétique à 40 m de hauteur

LIFOU

ATLAS EOLIEN
des îles Loyauté

(1 point de calcul tous les 125 mètres)
Vitesse moyenne à 40 m de hauteur
TIGA

ATLAS EOLIEN
des îles Loyautés
(un point de calcul tous les 125 mètres)
Densité énergétique à 40 m de hauteur
TIGA

ATLAS EOLIEN
des îles Loyautés
(un point de calcul tous les 125 mètres)
Intensité de turbulence à 40 m de hauteur
TIGA

ATLAS EOLIEN
des îles Loyautés
(un point de calcul tous les 125 mètres)
Coefficient de Weibull A à 40 m de hauteur
TIGA

ATLAS EOLIEN
des îles Loyautés
(un point de calcul tous les 125 mètres)
Coefficient de Weibull k à 40 m de hauteur
TIGA

ATLAS EOLIEN
des îles Loyautés
(un point de calcul tous les 125 mètres)
Production annuelle moyenne
à 40 m de hauteur
TIGA

ATLAS EOLIEN
des îles Loyautés
(un point de calcul tous les 125 mètres)

ATLAS EOLIEN — carte générée le 31 mai 2002 à partir des données de vent du 01/01/2004 au 31/01/2004
Vitesse moyenne à 40 m de hauteur
MARE

ATLAS EOLIEN
des îles Loyautés
(un point de calcul tous les 125 mètres)
Densité énergétique à 40 m de hauteur
MARE

ATLAS EOLIEN
des îles Loyautés
(un point de calcul tous les 125 mètres)
Intensité de turbulence à 40 m de hauteur
MARE

ATLAS EOLIEN
des îles Loyautés
(un point de calcul tous les 125 mètres)

ATLAS EOLIEN — carte générée le 32 mai 2003 à partir des données de vent du 01/01/2004 au 31/03/2004
Coefficient de Weibull A à 40 m de hauteur
MARE

ATLAS EOLIEN
des îles Loyautés
(un point de calcul tous les 125 mètres)

ATLAS EOLIEN — carte générée le 32 mai 2004 à partir des données de vent du 01/01/2004 au 31/12/2004
Coefficient de Weibull k à 40 m de hauteur MARE

ATLAS EOLIEN des îles Loyautés
(un point de calcul tous les 125 mètres)
Production annuelle moyenne à 40 m de hauteur
MARE

ATLAS EOLIEN des îles Loyautés
(un point de calcul tous les 125 mètres)